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Abstract. Many-body Hamiltonians obtained from first principles generally include all possible non-local
interactions. But in dynamical mean field theory the non-local interactions are ignored, and only the
effects of the local interactions are taken into account. The truncation of the non-local interactions is
a basis dependent approximation. We propose a criterion to construct an appropriate localized basis in
which the truncation can be carried out. This involves finding a basis in which a functional given by the
sum of the squares of the local interactions with appropriate weight factors is maximized under unitary
transformations of basis. We argue that such a localized basis is suitable for the application of dynamical
mean field theory for calculating material properties from first principles. We propose an algorithm which
can be used for constructing the localized basis. We test our criterion on a toy model and find it satisfactory.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.-w Theories and models of
many-electron systems

1 Introduction

In the last decade and a half dynamical mean field the-
ory (DMFT) has emerged as an important tool for study-
ing condensed matter systems with strong correlation [1].
The principal difficulty in understanding these systems is
the non-perturbative character of such systems, for which
the physical properties cannot be understood by expand-
ing various quantities in powers of the interaction. In this
respect DMFT is a powerful tool for studying problems of
interacting electrons on a lattice. It is a non-perturbative
technique which is able to capture fully the local dynam-
ical correlations in the system. Single site DMFT, as an
approximation scheme, is controlled in that the result is
exact in the limit of large coordination numbers [1]. Re-
cent extensions of DMFT to clusters seem to be rapidly
convergent for local observables [2]. Other cluster schemes
such as cluster perturbation theory and dynamical cluster
approximation are also being used to study problems of
strong electron correlation [3]. Recently it has also been
recognized that DMFT can be used as a powerful tool
for the realistic computation of properties of materials as
in the LDA+DMFT scheme [4–6]. Indeed results for a
large variety of materials ranging from Cerium [7], Iron
and Nickel [8], Plutonium [9] and many other oxides have
been successfully studied with this method starting from
first principles.
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A common way to utilize DMFT in first principles
calculations is to first derive a Hamiltonian with a ki-
netic energy part and a general short-range interaction
part. This Hamiltonian, which will be the starting point
of this paper in equation (1), is subsequently studied by
DMFT. The long-range part of the Coulomb interaction
can be taken into account by several means. For exam-
ple, in extended DMFT this is done by coupling the
electron at the impurity site to a bath of bosons whose
spectral function is determined self-consistently [10,11].
This is equivalent to treating the electrons in the pres-
ence of a fluctuating electric field (long range interac-
tion). Another possibility is to follow along the lines of
Bohm and Pines [12]. In this method, starting with the
charged electron gas, one performs canonical transforma-
tions to screen the electrons. In the resulting Hamiltonian
the excitations are no longer the bare charged electrons,
but screened neutral quasi-particles. There are various
methods to obtain the starting Hamiltonian for DMFT.
(1) In one of the approaches the kinetic energy term is
the Kohn Sham Hamiltonian of a density functional the-
ory calculation written in a local basis set. The inter-
action terms, which can include on-site (Hubbard ) as
well as the short range part of the Coulomb interaction,
is evaluated using constrained LDA [4]; (2) in an alter-
native procedure, as mentioned above, one could start
with the electron gas Hamiltonian and the periodic poten-
tial, and perform the Bohm-Pines canonical transforma-
tion [12] to reduce the range of the Coulomb interactions,
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and then write the transformed Hamiltonian in a local
basis set; (3) a third approach proposed recently [13] uses
the GW approach to obtain the interaction strength.

The next step is the study of the resulting Hamiltonian
with a short-range interaction using DMFT. This involves
local approximations, and the notion of locality depends
explicitly on the basis set considered. To illustrate the
point, if we perform an invertible transformation of the
original basis, we merely re-express the original Hamilto-
nian in a new basis, provided we keep all the terms in
the Hamiltonian. The full electron Green’s function is ob-
tained by applying the same transformation to the cre-
ation and destruction operators. But in practice, one per-
forms two approximations that explicitly depend on the
basis set. The first one is to neglect interactions whose
range exceeds the cluster size (truncation). The second
(local approximation) consist of setting equal to zero the
elements of the self energy which exceeds that size. These
two approximations explicitly depend on the definition of
locality which is encoded in the basis set. In this paper we
address only the first issue, and argue that truncating non-
local interactions is appropriate when the wave-functions
of the basis are well localized. As DMFT techniques are
beginning to be applied to Hamiltonians with realistic in-
teractions involving non-local terms [14], there is need for
well-defined criteria for choosing optimal bases for com-
putations. The purpose of this paper is to propose one
criterion which can be used to construct a localized basis
for DMFT computations.

The method of choosing a suitable localized basis of
wave-functions has been studied earlier in quantum chem-
istry and in band structure theory [15]. The formulation
of the problem consists of two steps. First, one identifies
a certain group of transformations of the basis states, say
for example, unitary transformations. Second, one identi-
fies a criterion that picks out one basis out of all possible
choices that are connected by the transformations. The
criterion is a basis dependent quantity, and therefore is a
functional in the space of the transformations. It is a mea-
sure of the amount of localization of the wave-functions in
a given basis. For example, in quantum chemistry “en-
ergy localized molecular orbitals” have been studied [16].
These are obtained by maximizing under unitary transfor-
mations a functional given by the sum of the Coulomb self-
interaction of the orbitals. Similarly, for band structure
calculations the use of “maximally-localized” Wannier
functions has been proposed [15]. The idea is to exploit
the freedom that is present in the choice of the phases of
the Bloch orbitals. With a given set of Bloch orbitals one
can define a new set by a unitary transformation. From
each such set of Bloch orbitals one can obtain a corre-
sponding set of Wannier functions by Fourier transforma-
tion. The maximally-localized Wannier functions are ob-
tained by minimizing the spread functional, which is the
sum of the second moments of the Wannier functions, in
the space of unitary transformations. More recently, the
construction of localized basis states has been extended to
include non-orthogonal molecular orbitals [17].

The rest of the paper is organized as follows. In Sec-
tion 2 we identify a criterion for choosing a basis suitable
for DMFT. We construct a functional which is maximum
in the preferred basis. We discuss the properties of such a
basis by studying linear variations of the functional under
unitary transformations. We also propose a method for
constructing the preferred basis. In Section 3 we test the
criterion on a Hamiltonian whose interaction is taken to
be simple but non-trivial. We find that the criterion and
the associated functional is well-behaved. In conclusion,
we summarize our main results.

2 Localized basis for DMFT

To keep the discussion general, in the following we for-
mulate the problem in a basis which is non-orthogonal.
For this purpose we consider a system of interacting elec-
trons on a lattice whose Hamiltonian is expressed in a
basis of atomic orbitals. The single particle states are de-
noted by φα(r − Rn) ≡ 〈r|nα〉, where α is a symmetry
related index (say, orbital) and Rn is a lattice position.
We suppose there are m orbitals per site such that the
index α = 1, . . . , m, and there are N lattice sites with the
index n = 0, . . . , N − 1. We also impose periodic bound-
ary condition |n, α〉 = |n + N, α〉. The states defining the
basis, unlike those in a Wannier basis, are not orthog-
onal. We denote the overlap between any two states by
Oαβ(n−m) ≡ 〈nα|mβ〉. The second quantized many-body
Hamiltonian can be written as

H =
∑

nm
αβ

tnm
αβ c†n,αcm,β +

∑

nmlk
αβγδ

V nmkl
αβδγ c†n,αc†m,βck,δcl,γ . (1)

We assume that the matrix elements tnm
αβ ≡

〈nα|H0|mβ〉 for the non-interacting part, and
V nmkl

αβδγ ≡ 〈nα, mβ|V̂ |lγ, kδ〉 for the interacting part
are known from first principles studies such as band
structure calculations. It is useful to bear in mind that
the anti-commutation relation between the creation
and annihilation operators in a non-orthogonal basis
is given by {c†n,α , cm,β} = O−1

αβ (n − m) [18]. We now
consider an invertible transformation of the single particle
basis that preserves the lattice translation invariance,
|nα〉 → |n′α′〉 =

∑
mβ Tβα′(m − n′)|mβ〉. Expressed in

the new basis the Hamiltonian, say H′, has the same form
as in equation (1) except with all the indices primed. We
know that H′ = H, since it is the same operator expressed
in two different bases. However, when we truncate all the
non-local interactions, we deal with a model Hamiltonian
of the form

Htr =
∑

nm
αβ

tnm
αβ c†n,αcm,β +

∑

n
αβγδ

V nnnn
αβδγ c†n,αc†n,βcn,δcn,γ . (2)

But the process of truncation is a basis dependent step.
If we perform the truncation in the new basis, i.e., on H′,
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the resulting new truncated Hamiltonian H′
tr �= Htr. This

observation implies that ignoring non-local interactions is
a good approximation only if the single particle basis is
sufficiently localized. In the following we develop a sys-
tematic criterion for constructing such a basis.

Here we consider only unitary transformations of basis.
Later we comment about the possibility of extending the
scheme to include non-unitary invertible transformations
as well. We start from an initial basis {|nα〉}, and consider
unitary transformations

|nα〉 → |n′α′〉 = U |nα〉 =
∑

mβ

Uβα(m − n)|mβ〉 (3)

to new basis states {|n′α′〉}. In order to find a criterion to
choose the most localized basis among the possible bases
{|n′α′〉}, we first identify a quantity which is invariant
under unitary transformations. The trace of any operator
has this property. Since we are concerned about truncating
the interacting part of the Hamiltonian, we consider the
trace of the square of the interaction operator. In terms of
the overlap matrix and the interactions expressed in the
{|nα〉} basis this is given by

I = Tr(V̂ 2) = O−1
αβ (n − m)O−1

γδ (l − k)O−1
σρ (r − s)

×O−1
ην (p − q)V mkpr

βδησ V sqln
ρνγα. (4)

Here, and in the rest of the paper we adopt the convention
that repeated indices are summed. The invariant defined
above has two basis dependent parts, namely, terms that
involve only the local interactions and those involving non-
local interactions. Keeping only the local interactions in
a given basis, we define the “local interaction functional”.
For example, in the basis {|nα〉} the functional has the
value

F [{|nα〉}] = O−1
αβ (0)O−1

γδ (0)O−1
σρ (0)O−1

ην (0)V 0000
βδησV 0000

ρνγα.

To elucidate the structure of the functional we first note
that the overlap matrix remains unchanged under unitary
transformations, i.e.,

〈n′α′|m′β′〉 = Oα′β′(n′ − m′) = 〈nα|mβ〉 = Oαβ(n − m).
(5)

Next, the transformation of the interaction terms is
given by

V nmkl
αβδγ → V n′m′k′l′

α′β′δ′γ′ = U∗
σα(r − n)U∗

ρβ(s − m)V rsqp
σρνη

×Uηγ(p − l)Uνδ(q − k). (6)

In terms of the unitary transformations the local interac-
tion functional can be written as

F [{|n′α′〉}] =

O−1
α′β′(0)O−1

γ′δ′(0)O−1
σ′ρ′(0)O−1

η′ν′(0)V 0000
β′δ′η′σ′V 0000

ρ′ν′γ′α′

=
[
O−1

αβ (0)O−1
γδ (0)O−1

σρ (0)O−1
ην (0)

]

×
[
U∗

µβ(r)U∗
κδ(s)V

rsqp
µκλτ Uτσ(p)Uλη(q)

]

× [
U∗

πρ(n)U∗
φν(m)V nmkl

πφωθ Uθα(l)Uωγ(k)
]
. (7)

The inverse of the overlap matrix enters as weight factor,
and the interaction terms in the starting basis {|nα〉} serve
as parameters of the functional. The desired basis is the
one in which the functional is maximum in the space of
unitary transformations. This criterion also implies that,
in the chosen basis, the part of the invariant I that con-
tains non-local interactions is minimized.

In order to study the property of the preferred basis
we consider infinitesimal unitary transformation given by
U = eiεH , where H is hermitian and ε is a small parame-
ter. The action of H on the single particle wave-functions
is given by H |nα〉 = Hβα(m − n)|mβ〉, such that

Uαβ(n − m) = δαβδnm + (iε)Hαβ(n − m)

+
(iε)2

2!
Hαγ(n − l)Hγβ(l − m) + . . .

The hermiticity of H implies that

[〈nα|H |mβ〉]∗ = 〈mβ|H |nα〉,

i.e.,

H∗
γβ(l − m)Oγα(l − n) = Oβγ(m − l)Hγα(l − n).

For a lattice of N sites with periodic boundary condition
and m orbitals per site, we note that the transformation
matrix H has Nm2 real independent parameters. In the
following we assume that V̂ (r1, r2) = V̂ (r2, r1), so that
V nmkl

αβδγ = V mnlk
βαγδ . For the convenience of notation we define

the quantity

Lσµ(t) ≡ O−1
σρ (0)O−1

αβ (0)O−1
γδ (0)O−1

ην (0)V 0000
ρνγαV 000t

βδηµ. (8)

To O(ε) the variation of the functional can be written as

δF = (−4iε)
[
L∗

σµ(t)H∗
µσ(t) − Lσµ(t)Hµσ(t)

]

= (−4iε)
[
O−1

σβ (m − n)L∗
αβ(N − m)Oαµ(n − t)

−Lσµ(t)] Hµσ(t). (9)

We define

Aσµ(t) ≡ Lσµ(N−t)−O−1
σβ (m−n)L∗

αβ(N−m)Oαµ(n+t),
(10)

and we note that A is anti-hermitian, i.e.,

Oβγ(m − l)Aγα(l − n) = −A∗
γβ(l − m)Oγα(l − n). (11)

The condition for the functional F to have a local maxi-
mum is

δF

δHµσ(t)
= Aσµ(N − t) = 0. (12)

The above anti-hermitian condition has to be satisfied by
the preferred basis. In other words, the preferred basis is
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the one in which Lσµ(t) is hermitian. The above condi-
tion gives Nm2 real independent equations, which is the
same as the number of real independent parameters in the
transformation matrix H .

The following is a simple ansatz for maximizing F by
successive unitary transformations. We start with an ini-
tial basis {|nα〉}, and we calculate Aµσ(t) using equa-
tions (8) and (10). We then change the basis using the
transformation

Hµσ(t) = iAµσ(t), (13)

and iterate this procedure until the condition for the max-
imum is achieved. We assert (proved in the appendix) that
with this ansatz, to O(ε)

δF = −(4ε)Aσµ(N − t)Aµσ(t) ≥ 0. (14)

This ensures that with successive transformations the
value of the functional increases (provided ε is small
enough) until it reaches a local maximum.

Our method for constructing a localized basis is similar
to Wegner’s flow equation [19] and Glazek and Wilson’s
similarity renormalization scheme [20] approaches where
small unitary transformations are used to reduce non-
diagonal elements of a Hamiltonian. In our case, we use
unitary transformations to reduce the strength of non-
local interactions and increase the value of the func-
tional F .

3 Discussion and conclusion

We test our criterion on a lattice Hamiltonian with an
interaction of the form

Hint =
∑

ijkl

Uijklc
†
i c

†
jckcl, (15)

where

Uijkl =
∑

R

φ∗(i − R)φ∗(j − R)φ(k − R)φ(l − R). (16)

Here φ(i−R) ≡ φ(Ri−R) is an orbital on lattice site Ri,
which defines a one-particle starting basis {φ(n−R)}. The
interaction described above is local in configuration space,
but in the basis of {φ(n − R)} it has non-local terms as
well. For simplicity we consider one orbital per site, and
assume that the starting basis is orthonormal. In this basis
the local interaction functional is given by

F =
1
Ns

∑

n,R,R′
|φ(n − R)|4 |φ(n − R′)|4 , (17)

where Ns is the number of lattice sites. We note that
the above functional has a form similar to the (square
of the) inverse participation ratio that is studied in the

context of Anderson localization [21]. We perform a uni-
tary transformation of the basis of the form φ(n − R) →
φ(n − R) + δφ(n − R), where

δφ(n − R) = (iε)
∑

m

hmnφ(m − R) + O(ε2).

The coefficients hmn are hermitian such that h∗
mn = hnm.

The variation of the functional F can be written as

δF =
4C
Ns

∑

n,R

|φ(n − R)|2 {φ∗(n − R)δφ(n − R) + h.c.} ,

where C =
∑

R |φ(n − R)|4 is a site independent constant.
Using the above form for δφ and the unitarity of the trans-
formation, we get to O(ε)

δF =
4iεC
Ns

∑

n,m,R

hnmφ∗(m − R)φ(n − R)

×
[
|φ(m − R)|2 − |φ(n − R)|2

]
. (18)

The extrema of the functional is given by
∑

R

φ∗(m−R)φ(n−R)
[
|φ(m − R)|2 − |φ(n − R)|2

]
= 0,

(19)
for all sites (n, m). By inspection, there are two solutions
to the above equation. (1) |φ(n − R)|2 = 1/Ns, ∀n, which
is the limit of delocalized states, for which F = 1/N 2

s

(minimum); (2) |φ(n − R)|2 = δn,R, which is the limit of
localized states. In this case F = 1 (maximum), and the
interaction is entirely on-site. Starting with the original
basis {φ(n − R)}, and the ansatz

hnm = i
∑

R

φ∗(n − R)φ(m − R)

×
[
|φ(n − R)|2 − |φ(m − R)|2

]
, (20)

we get to O(ε)

δF =
4εC
Ns

∑

n,m,R

|φ∗(n − R)φ(n − R)|2

×
[
|φ(m − R)|2 − |φ(n − R)|2

]2

≥ 0. (21)

Provided ε is chosen small enough (to justify the neglect
of higher order variations), with the above ansatz it is
possible to increase the value of F with successive unitary
transformations until the limit of localization is attained.
This simple example illustrates how the local interaction
functional can be used to construct a basis of localized
one-particle states. For interactions which are more com-
plicated and realistic, it is unlikely that unitary transfor-
mations can make the interactions entirely on-site. How-
ever, the strengths of the non-local terms can be reduced
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(quantitatively defined by maximization of functional F )
in a more localized basis.

Two more comments are of relevance. First, our crite-
rion ignores the non-interacting part of the Hamiltonian. If
one starts with nearest neighbour hopping in the original
basis, in the localized basis the hopping will be more com-
plicated. But the point of view adopted here is that the
non-interacting part can still be solved exactly. Second, in
this paper we consider only unitary transformations of ba-
sis. This implies that one maximizes the local interaction
functional within a family of bases with the same overlap
matrix (say, orthonormal bases, if the original basis is or-
thonormal). In principle one could probe for bases with
different overlap matrices by general invertible transfor-
mations. Such a group is non-compact and one needs to
impose constraints such that the functional is bounded
from above. One possible constraint can be imposed in
terms of the singular value decomposition of the trans-
formation matrix, say, the ratio of the maximum and the
minimum singular values be within a specified bound.

In conclusion, we propose a criterion for constructing a
localized single particle basis where non-local interactions
can be truncated. Such a basis is appropriate for using
DMFT for the calculation of material properties. We sug-
gest a simple algorithm by which the construction of the
localized basis can be carried out. By testing the criterion
on a toy Hamiltonian we conclude that the criterion and
the associated functional is well-behaved.

We thank D. Vanderbilt, S. Savrasov, V. Oudovenko, and H.
Jeschke for stimulating discussions and useful suggestions.

Appendix

In this appendix we prove the assertion in equation (14).
First, if the basis is orthonormal to begin with, i.e.,

Oαβ(n − m) = δαβδnm, it is easy to see that

Aµσ(t) = Lµσ(N − t) − L∗
σµ(t) = −A∗

σµ(t). (22)

Then, δF = (4ε) |Aσµ(N − t)|2 ≥ 0.
If the basis {|nα〉} is non-orthogonal, we assume there

exists an orthonormal basis {|aτ〉〉} (say, a Wannier ba-
sis) to which it is related by |aτ〉〉 = S(n, α; aτ)|nα〉 and
〈〈aτ | = 〈nα|S(n, α; a, τ)∗. One can show that

O−1
αβ (n − m) = S(n, α; a, τ)S(m, β; a, τ)∗. (23)

Using the above relation and equation (11) one can show
that

δF = (4ε)O−1
σβ (m − n)A∗

αβ(m)Oαµ(n − t)Aµσ(t)

=
4ε

N

∑

ab
τκ

∣∣∣∣∣∣∣

∑

tm
µσ

S−1(b, κ; t, µ)Aµσ(t − m)S(m, σ; a, τ)

∣∣∣∣∣∣∣

2

≥ 0. (24)
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